Nummer ML-4420 |
Titel Efficient Machine Learning in Hardware |
Lehrform(en) Vorlesung |
---|---|---|
ECTS | 6 | |
Arbeitsaufwand - Kontaktzeit - Selbststudium |
Arbeitsaufwand:
180 h Kontaktzeit:
60 h / 4 SWS Selbststudium:
120 h |
|
Veranstaltungsdauer | 1 Semester | |
Häufigkeit des Angebots | Im Sommersemester | |
Unterrichtssprache | Englisch | |
Prüfungsform | Mündliche Prüfung |
|
Inhalt | Die jüngsten Durchbrüche bei der Verwendung von tiefen neuronalen Netzen für eine Vielzahl von Anwendungen des maschinellen Lernens wurden stark von der Verfügbarkeit von Hochleistungs-Rechenplattformen beeinflusst. Im Gegensatz zu ihrem biologischen Ursprung ist die hohe Leistung künstlicher neuronaler Netze jedoch von einem wesentlich höheren Energiebedarf abhängig. Während der durchschnittliche Energieverbrauch des gesamten menschlichen Gehirns mit dem eines Laptops vergleichbar ist (d. h. 20 W), greift die künstliche Intelligenz häufig auf große HPCs mit einem um mehrere Größenordnungen höheren Energiebedarf zurück. Dieser Vortrag wird dieses Problem diskutieren und Lösungen aufzeigen, wie energie- und ressourceneffiziente Architekturen für maschinelles Lernen in Hardware aufgebaut werden können. In diesem Zusammenhang werden die folgenden Themen behandelt: |
|
Qualifikationsziele | Die Studierenden erwerben vertiefte Kenntnisse über die Herausforderungen energieeffizienter Hardware für maschinelles Lernen und die entsprechenden modernen Lösungen. Sie können verschiedene Hardware-Architekturen hinsichtlich des Kompromisses zwischen Energieverbrauch, Komplexität, Rechengeschwindigkeit und der Spezifität ihrer Anwendbarkeit vergleichen. Die Studierenden lernen, welche Arten von Hardware-Architekturen für maschinelles Lernen verwendet werden, verstehen die Gründe, warum eine bestimmte Architektur für eine bestimmte Anwendung geeignet ist, und können maschinelle Lernalgorithmen effizient in Hardware implementieren. |
|
Vergabe von Leistungspunkten/Benotung |
Lehrform
Status
SWS
LP
Prüfungsform
Prüfungsdauer
Benotung
Berechnung
Modulnote (%) |
|
Teilnahmevoraussetzungen | Es gibt keine besonderen Voraussetzungen. | |
Dozent/in | Bringmann | |
Literatur / Sonstiges | Will be announced in the first lecture / Knowledge about foundations in machine learning |
|
Zuletzt angeboten | Sommersemester 2022 | |
Geplant für | Sommersemester 2025 | |
Zugeordnete Studienbereiche | INFO-INFO, INFO-PRAK, INFO-TECH, MEDI-APPL, MEDI-INFO, MEDI-MEDI, MEDI-MMT, ML-CS, ML-DIV |